BSc/BEng Examinations 1998 Theory of Computation (P220)

Question 1

[Marks]

(a) Draw a diagram of the Finite State Automaton represented by the following state transition table:

	-	
-1	а	2
-1	b	3
2	а	1
2	b	4
+3	а	4
+3	b	1
4	а	3
4	b	2

- (b) Use Kleene's Theorem to derive a regular expression that defines the same language as that recognised by the FSA in part (a) [30]
- (c) The FSA in part (a) recognises all strings over the alphabet {a,b} which contain an even number of as and an odd number of bs.
 Modify this FSA so that it recognises all strings over the alphabet {a,b} which contain an odd number of as and an even number of bs. [20]
- (c) Prove, using the Pumping Lemma and the closure properties of the regular languages, that the language consisting of all strings over the alphabet $\{a,b\}$ which contain an **equal** number of *a*s and *b*s is **non-regular**. [30]

Question 2

The following questions relate to the language of arithmetic expressions defined by the following context-free grammar:

 $L \to L + L$ $L \to L - L$ $L \to (L)$ $L \to T$ $T \to a$ $T \to b$ $T \to \lambda$

where the terminal symbols are =, -, (,), a, b and λ is the null symbol.

(a)	Convert the grammar to Chomsky Normal Form.	[30]
-----	---	------

- (b) Using the CNF grammar, construct a non-deterministic push-down automaton that recognises L. [30]
- (d) State and explain the Pumping Lemma for non-context-free languages, showing how it derives from CNF. [40]

Question 3

(a) Construct a Turing Machine that recognises the language $\{a^mb^n | m>n\}$ using the following algorithm:

step 1. read an 'a';

step 2. run up the tape until the first 'b' is reached, if there is one;

step 3. DELETE that 'b' and the 'a' preceding it;

(Use, but **do not define**, the DELETE sub-machine that leaves the read head at the character preceding the one deleted.)

step 4. run back down the tape to the first blank cell and repeat from step 1.[30]

(b) Display a trace of your machine's operation on each of the tapes:

(i)	aaabb	[10]
(ii)	aabb	[10]

(c) Give a BRIEF account of

- (i) a coding of Turing Machines, and [20]
- (ii) how that coding might be used to prove the undecidability of the Halting Problem. [30]