(a) Draw a diagram of the Finite State Automaton represented by the following state transition table:

-1	a	2
-1	b	3
2	a	1
2	b	4
+3	a	4
+3	b	1
4	a	3
4	b	2

(b) Use Kleene's Theorem to derive a regular expression that defines the same language as that recognised by the FSA in part (a)
(c) The FSA in part (a) recognises all strings over the alphabet $\{a, b\}$ which contain an even number of $a \mathrm{~s}$ and an odd number of $b s$.
Modify this FSA so that it recognises all strings over the alphabet $\{a, b\}$ which contain an odd number of a s and an even number of $b \mathrm{~s}$.
(c) Prove, using the Pumping Lemma and the closure properties of the regular languages, that the language consisting of all strings over the alphabet $\{a, b\}$ which contain an equal number of a and b s is nonregular.

Question 2
The following questions relate to the language of arithmetic expressions defined by the following context-free grammar:

$$
\begin{aligned}
& \text { L -> L + L } \\
& \text { L -> L - L } \\
& \text { L -> (L) } \\
& \text { L -> T } \\
& \text { T -> a } \\
& \text { T -> b } \\
& \text { T -> } \lambda
\end{aligned}
$$

where the terminal symbols are $=,-,(), \mathrm{a},$,b and λ is the null symbol.
(a) Convert the grammar to Chomsky Normal Form.
(b) Using the CNF grammar, construct a non-deterministic push-down automaton that recognises L .
(d) State and explain the Pumping Lemma for non-context-free languages, showing how it derives from CNF.

Question 3

(a) Construct a Turing Machine that recognises the language $\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m}>\mathrm{n}\right\}$ using the following algorithm:
step 1. read an ' a ';
step 2. run up the tape until the first ' b ' is reached, if there is one;
step 3. DELETE that ' b ' and the ' a ' preceding it;
(Use, but do not define, the DELETE sub-machine that leaves the read head at the character preceding the one deleted.)
step 4. run back down the tape to the first blank cell and repeat from step 1.[30]
(b) Display a trace of your machine's operation on each of the tapes:
(i) $a a a b b$
(ii) aabb
(c) Give a BRIEF account of
(i) a coding of Turing Machines, and
(ii) how that coding might be used to prove the undecidability of the Halting Problem.

