P222 Theory of Computation Examination 1999

Answer 3 Questions

- 1. (a) Define the five components of a Deterministic Finite State Automaton [20]
 - (b) Let M be a Deterministic Finite State Automaton, w be a string of symbols and L(M) be the language accepted by M. Under what circumstances is $w \in L(M)$? [20]
 - (c) Using Kleene's Theorem, derive a regular expression that defines the same language as that recognised by the following FSA: [30]

- (d) Prove, using the Pumping Lemma and the closure properties of the regular languages, that the language consisting of all strings over the alphabet $\{a,b\}$ which contain an **equal** number of *as* and *bs* is **non-regular**. [30]
- 2. The following questions relate to the language of arithmetic expressions defined by the following context-free grammar:
 - $\begin{array}{l} L \mathrel{\rightarrow} L + L \\ L \mathrel{\rightarrow} L \mathrel{-} L \end{array}$
 - L -> L -L -> (L)
 - L -> (L) L -> T
 - T -> a
 - T -> a T -> b
 - 1 -> b
 - Τ -> λ

where the terminal symbols are =, -, (,), a, b and λ is the null symbol.

- (a) Convert the grammar to Chomsky Normal Form.
- (b) Using the CNF grammar, construct a non-deterministic push-down automaton that recognises L. [30]

[30]

(c) State and explain the Pumping Lemma for non-context-free languages, showing how it derives from CNF. [40]

3.	(a)	Construct a Turing Machine that recognises the language $\{a^mb^n m>n\}$ using the following algorithm:	5
		ston 1 read on 'a':	
		step 1. read an a,	
		step 2. Tuil up the tape until the first of is feached, if there is one,	
		step 5. DELETE that b and the a preceding it;	
		(Use, but do not define , the DELETE sub-machine that leaves the read	
		head at the character preceding the one deleted.)	
		step 4. run back down the tape to the first blank cell and repeat from step 1.	[30]
	(b)	Display a trace of your machine's operation on each of the tapes:	
		(i) aaabb	[10]
		(ii) aabb	[10]
	(c)	Give a BRIEF account of	
		(i) a coding of Turing Machines, and	[20]
		(ii) how that coding might be used to prove the undecidability of the	
		Halting Problem.	[30]
4.	(a)	Define the class of languages $\mathbf{DTIME}(n^{i})$	[20]
	(b)	Define the classes of problem NP, NP-hard, and NP-complete	[30]
	(c)	(c) (i) Describe the 'Propositional Satisfiability Problem' and discuss its impo	
		in relation to the question of computational tractability.	[30]
		(ii) Describe two other problems that are NP-complete	[20]
		(,	[-0]