P222 Theory of Computation
Examination 1999
Answer 3 Questions

1. (a) Define the five components of a Deterministic Finite State Automaton
[20]
(b) Let M be a Deterministic Finite State Automaton, w be a string of symbols and $\mathrm{L}(\mathrm{M})$ be the language accepted by M. Under what circumstances is $w \in \mathrm{~L}(\mathrm{M})$?
(c) Using Kleene's Theorem, derive a regular expression that defines the same language as that recognised by the following FSA:

(d) Prove, using the Pumping Lemma and the closure properties of the regular languages, that the language consisting of all strings over the alphabet $\{a, b\}$ which contain an equal number of a and $b \mathrm{~s}$ is non-regular.
2. The following questions relate to the language of arithmetic expressions defined by the following context-free grammar:

L-> L + L
L -> L - L
L-> (L)
L -> T
T $->\mathrm{a}$
T $->\mathrm{b}$
T $->\lambda$
where the terminal symbols are $=,-,(), \mathrm{a},$,b and λ is the null symbol.
(a) Convert the grammar to Chomsky Normal Form.
(b) Using the CNF grammar, construct a non-deterministic push-down automaton that recognises L.
(c) State and explain the Pumping Lemma for non-context-free languages, showing how it derives from CNF.
3. (a) Construct a Turing Machine that recognises the language $\left\{a^{m} b^{n} \mid m>n\right\}$ using the following algorithm:
step 1. read an 'a';
step 2. run up the tape until the first ' b ' is reached, if there is one;
step 3. DELETE that ' b ' and the ' a ' preceding it;
(Use, but do not define, the DELETE sub-machine that leaves the read head at the character preceding the one deleted.)
step 4. run back down the tape to the first blank cell and repeat from step 1.
(b) Display a trace of your machine's operation on each of the tapes:
(i) aaabb
(c) Give a BRIEF account of
(i) a coding of Turing Machines, and
(ii) how that coding might be used to prove the undecidability of the Halting Problem.
4. (a) Define the class of languages DTIME $\left(n^{i}\right)$ [20]
(b) Define the classes of problem $\boldsymbol{N P}, \boldsymbol{N P}$-hard, and $\boldsymbol{N P}$-complete [30]
(c) (i) Describe the 'Propositional Satisfiability Problem' and discuss its importance in relation to the question of computational tractability.
(ii) Describe two other problems that are $\boldsymbol{N P}$-complete.

